Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bereken a en b uit logaritmische functie

De grafiek van de functie f (x) = log(ax+b) gaat door de punten (1,1) en (7,2). Bereken a en b.

Kan ik gebruiken maken v.d volgende formule y = ax + b?
Ten eerst moet ik dan het richtingscoëfficiënt uitrekenen m.b.v van de afgeleide. f'x = ?
Ik loop hier al vast aangezien ik niet weet hoe ik de afgeleide kan uitrekenen aangezien a en b in de formule staan. Ik hoop dat iemand me verder kan helpen.

Marloe
Leerling bovenbouw havo-vwo - donderdag 14 juli 2011

Antwoord

Als je coördinaten van de gegeven punten invult dan heb je twee vergelijkingen met twee onbekenden. Met een beetje geluk kan je dat stelsel misschien zelfs wel oplossen!

log(a·1+b)=1
log(a·7+b)=2

log(a+b)=1
log(7a+b)=2

Volgens de hoofdregel van de logaritmen geldt:

a+b=101
7a+b=102

a+b=10
7a+b=100

Zou het dan verder lukken denk je?

WvR
donderdag 14 juli 2011

©2001-2024 WisFaq