Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Kruisende lijn

Ik heb de volgende vraag:
Deze vraag is een onderdeel van een som over een opslagruimte
waar ik echt niet uitkom.
Gegeven is een trapezium DAEH, waarbij AD=3 en AE+EH=5.
AE is variabel, dus DH ook
Hoek D en hoek A zijn 90°. In de ruimtefiguur staat een lijn AB(=10) loodrecht op AD en loodrecht op AE.
Nu de vraag: Bereken AE als een lijn door H lijn AB op een afstand van 1,25 meter kruist.
Ik heb er een tekening van gemaakt in het platte vlak en iedere keer weer gezocht naar gelijkvormige driehoeken, maar ik kom hier echt niet uit.......

Kunt U mij a.u.b. helpen?

Katrijn

Katrij
Leerling bovenbouw havo-vwo - donderdag 16 juni 2011

Antwoord

Hallo, Katrijn.

Stel AE=x, zodat EH=5-x.

In de vraag moet niet staan "een lijn door H", maar "de lijn HE".
Je ziet dan dat 1.25 de afstand is van A tot het voetpunt S van de loodlijn door A op (het verlengde van) HE.

Laat verder T het voetpunt zijn van de loodlijn uit H op (het verlengde van) AE.

Omdat de driehoeken ETH en ESA gelijkvormig zijn, is EH/HT = EA/AS.
Dus (5-x)/3 = x/1.25.

Hieruit volgt x=25/17.

hr
vrijdag 17 juni 2011

©2001-2024 WisFaq