Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 63872 

Re: Limiet irrationele functie

Hallo Davy,

Het uitwerken van de limiet door in de teller de irrationale vorm met zijn "tegenstrever te vermenigvuldigen in teller en noemer geeft toch aan ...
Na uitwerking:
lim x®-¥(3x2-3x+2)/(x+7)(Ö(4x2+x+7)+Ö(x2+4x+5)=
Lim (x®-¥)(x2(3-3/x+2/x2)/x(1+7/x)((-x)Ö4+1/x+7/x2+Ö(1+4/x+5/x2)
De breuken kunnen geschrapt worden en we bekomen:
lim (x®-¥(x2/-x2(3/(1+0)(2+1)=-1
Dat is toch niet zo moeilijk.
Ik hoop dat alles correct is geschreven en de indices netjes op zijn plaats staan...
Het resultaat klopt dus met wat de student aangeeft.
Groetjes,
Rik

Rik Le
Iets anders - zaterdag 25 december 2010

Antwoord

Bij dezen jouw antwoord als aanvulling.
De webapplicatie is een handig hulpmiddel voor studenten die hun antwoorden willen nakijken of op weg geholpen willen worden, vandaar dat ik de verwijzing naar WolframAlpha gaf. Ook om te voorkomen dat Wisfaq als huiswerkfunctie gaat dienen. Nu is de moeilijkheidsgraad van deze opgave nog vrij laag, maar de applicatie maakt in een handomdraai korte metten met ingewikkelde opgaven.

Davy
zondag 26 december 2010

©2001-2024 WisFaq