Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Perforaties en openingen

Beste,
We hebben een vraag gekregen die ik niet kan oplossen of toch niet weet hoe ik er moet aan beginnen.
De opgave: f(x)=(9x2+px-4)/(px-1)
Voor welke waarden van p heeft f een opening? bepaal de coördinaat van deze opening.
Alvast super bedankt

Robin
3de graad ASO - zaterdag 11 december 2010

Antwoord

Beste Robin,

In een perforatie moet gelden dat zowel de teller als de noemer 0 moet zijn.
Hier dus $f(x) = \frac{9x^{2}+px-4}{px-1}$ moet $9x^{2}+px-4=0$ en $px-1=0$.
De noemer is 0 als $px-1=0$ dus als $p=\frac{1}{x}$. Substitutie van deze p-waarde in de teller levert $9x^{2} + \frac{1}{x} \cdot x - 4 = 0$ dus $9x^{2} - 3 = 0$ als $x = \pm \frac{1}{3} \sqrt{3}$ dus als $p = \pm \sqrt{3}$ want $p = \frac{1}{x}$.
Als $p = \sqrt{3}$ dan luidt de functie $f(x) = \frac{9x^{2}+\sqrt{3} \cdot x-4}{\sqrt{3} \cdot x-1}$ en zojuist gevonden dat $x = \frac{1}{3} \sqrt{3}$, dit leidt dus tot de onbepaalde vorm $f(\frac{1}{3} \cdot \sqrt{3})=\frac{0}{0}$. De y-waarde van de perforatie (dus de limiet van $y$ als $x$ naar $\frac{1}{3} \cdot \sqrt{3}$ nadert) kan gevonden worden door de stelling van de L'Hopital toe te passen. Dit levert het volgende op: $ \frac{18 \cdot \frac{1}{3} \cdot \sqrt{3} + \sqrt{3}}{\sqrt{3}} = \frac{7\sqrt{3}}{\sqrt{3}} = 7$. Dus een van de perforatie coördinaten luidt ($\frac{1}{3} \cdot \sqrt{3}$,7).
Aan jou de eer om het andere coördinaat te vinden .

Groetjes,
Davy

Davy
zaterdag 11 december 2010

©2001-2024 WisFaq