Oneigenlijke integralen, eindige oppervlakte, maar oneindige inhoud?
We hebben in de les de oppervlakte berekend van het vlakdeel begrensd door de grafiek van de kromme xy=9 en de x-as, rechts van x=1 en die is oneindig, maar de inhoud van het omwentelingslichaam dat je krijgt door die oppervlakte te wentelen om de x-as is dan 81pi en dus eindig. Kan dat wel? Ik kan het me niet voorstellen.