Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Goniometrische identiteit

Hallo, ik ben een leerlinge uit het 5de jaar ASO. Morgen heb ik een toets wiskunde over goniometrische identiteiten en vergelijkingen. Nu ben ik oefeningen aan het maken. Ik ben nu aan een oefingen toegekomen waarbij ik niet verdergeraak. Ik ben vastgelopen. Nu zou ik willen vragen of er iemand deze oefening wil oplossen voor mij zodat ik eens zie waar ik eventueel een fout heb gemaakt. De oefening is:
cos a sin(b-c) + cos b sin(c-a)+ cos c sin(a-b) = 0
Voor alle duidelijkheid zou ik wel juist nog een alle formules op een rij willen zetten die ik tot nu toe gezien hebben, en die dus gebruikt kunnen worden: basisformules, formules van de dubbele hoek (bv. sin 2a) som- en verschilformules (vb. cos(a-b)= cosa.cosb+sina.sinb), de formules van Carnot, formules van Simpson en de verwante hoeken.
Ik hoop dat er mij iemand verder kan helpen!
en alvast bedankt!
Eva

Eva
3de graad ASO - woensdag 17 november 2010

Antwoord

Vervang sin(b-c) door sin(b).cos(c) - cos(b).sin(c) en doe precies hetzelfde met de twee andere sinusvormen, werk alle haakjes uit en je ziet dat elke term wegvalt tegen een andere term.

MBL
woensdag 17 november 2010

 Re: Goniometrische identiteit 

©2001-2024 WisFaq