Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 63274 

Re: Functie ontbinden in factoren

Hoi Davy,

Dank je voor je antwoord. In het boek geven ze alleen als antwoord 4(1+2y)2.
Zou je mij kunnen vertellen hoe ze aan dit antwoord komen?
Bedankt

bart
Leerling mbo - zaterdag 16 oktober 2010

Antwoord

Hoi,

Er zijn meerdere manieren om een functie te ontbinden, en je kunt andere antwoorden krijgen (die eigenlijk hetzelfde zijn alleen een andere 'verschijningsvorm' hebben).
Ik zal je eerst laten zien hoe het antwoordboekje geredeneerd heeft (zij hebben inderdaad eerst een 4 buiten haakjes gezet, zoals jij eerst gedaan had). Daarna zal ik laten zien dat mijn vorige antwoord hetzelfde is als dit antwoord.

$16y^2 + 16y + 4 = 4(4y^2 + 4y + 1)$
$4((2y)^2 + 2 \cdot 2y + 1)$
Stel $p = 2y$ dan staat er $4(p^2 + 2p + 1)$
$4(p+1)^2$, daarna $p = 2y$ terug invullen
$4 \cdot (2y+1)^2$

Nu zal ik aantonen dat dit antwoord hetzelfde is als $16(y+\frac{1}{2})(y+\frac{1}{2})$ oftewel $16 \cdot (y+\frac{1}{2})^2$.
$16(y+\frac{1}{2})^2$
$= 4^2 \cdot (y+\frac{1}{2})^2$
$= (4(y+\frac{1}{2}))^2$
$= (2 \cdot 2 \cdot (y + \frac{1}{2}))^2$
$ = (2(2y+1))^2$
$= 2^2 \cdot (2y + 1)^2$
$= 4 \cdot (2y + 1)^2$

Duidelijk?

Davy
zaterdag 16 oktober 2010

©2001-2024 WisFaq