Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Kwadraatsafsplitsen en de abc-formule

Laat met behulp van kwadraatafsplitsen zien dat
ax2+bx+c=0 de volgende oplossingen heeft:

 
Ik begrijp de vraagstelling niet en ook niet hoe je het aanpakt.

Wiresh
Leerling bovenbouw havo-vwo - dinsdag 14 september 2010

Antwoord

Je zou 's kunnen kijken naar Wat is kwadraatafsplitsen? of Kwadraatafsplitsen.

Als je dat onder de knie hebt kan je kwadraatafsplitsen met de algemene formule voor de tweedegraads vergelijking:

ax2+bx+c=0

Dat begint zo:

$
\eqalign{
& ax^2 + bx + c = 0 \cr
& x^2 + \frac{b}
{a}x + \frac{c}
{a} = 0 \cr
& \left( {x + \frac{b}
{{2a}}} \right)^2 - ....\,\,\,enz... \cr}
$

Zou het dan lukken?

WvR
dinsdag 14 september 2010

©2001-2024 WisFaq