Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oneindig veel eigenwaarden

Beste wisfaq,

Ik heb het volgende Sturm-Liouville probleem

y''+m·y=0
y(0)=0 en y'(1)-2y(1)=0

Ik wil aantonen dat er oneindig veel eigenwaarden zijn die voldoen aan
(1) m{1}m{2}...
(2) m_{n}/(n2)-C als n-oneindig, C ongelijk 0.

Ik heb m.b.v. de eerste voorwaarde gevonden dat

y(x)=A·sin(sqrt(m)·x) voor een zekere constante A.

De tweede voorwaarde geeft de volgende vergelijking

sqrt(m)·cos(sqrt(k))=2·sin(sqrt(m)). Hieruit volgt dat

(·) tan(sqrt(m))=1/2·m.

Nu wil ik m.b.v. (·) de punten (1) en (2) aantonen. Maar eerst wil ik aantonen dat (·) oneindig veel oplossingen heeft.

Nu weet ik dat tan(z)=z oneindig veel oplossingen heeft. Mijn vraag is nu eigenlijk: hoe toon ik correct wiskundig aan dat (·) oneindig veel oplossing heeft.
Ik heb zelf het volgende grove bewijsje voor tan(x)=x:

Het interval tussen twee asymptoten van de functie tan(x) wordt gegeven door [2k-1]·pi/2x[2k+1]·pi/2. Dit interval noem ik I(k). Voor waarden van x dicht genoeg bij het linkereind van I(k) geldt
tan(x)-(1+2|k|)·pi/2x. Dus tan(x)-x0.
Voor waarden van x dicht genoeg bij het rechtereind van I(k) geldt
tan(x)(1+2|k|)·pi/2x. Dus tan(x)-x0.

Omdat tan(x) continu is op I(k) moet er tenminste één waarde van x zijn waar tan(x)-x=0, volgens de Intermediate Value Theorem, zodat tan(x)=x. Omdat er tenminste één oplossing is voor ieder geheel getal k, heeft tan(x)=x oneindig veel oplossingen.

Is dit correct of kan het nog preciezer? En maakt die 1/2
in mijn geval in tan(x)=1/2x dit bewijs anders? En hoe volgen nu (1) en (2)?

Vriendelijke groeten,

Viky

Viky
Student universiteit - woensdag 23 juni 2010

Antwoord

Viky,
Je beschouwt het geval m0.Stel v=Öm.De eigenwaarden v(n) zijn de snijpunten van y=tanv en de lijn y=1/2v.Er geldt dat
(n-1/2)pv(n)(n+1/2)p,voor n=1,2,....De v(n) vormen dus een strikt toenemende rij.Hieruit volgt dat (n-1/2)2p2m(n)(n+1/2)2p2, zodat
m(n)/n2®p2voor n naar oneindig.

kn
zaterdag 26 juni 2010

©2001-2024 WisFaq