Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Differentiëren logaritme in breuk met x als teller

f(x) = $
\large {x \over {{}^5\log (x)}}
$

Toon algebraïsch aan dat f'(e) = 0

Ik weet dat ik de formule moet differentiëren en vervolgens e in moet vullen waarbij er 0 uit zou moeten komen, maar het lukt met niet. Heb al heel veel geprobeerd, zowel quotiëntregel als productregel als kettingregel. Ik kom er gewoon niet uit. Hoe moet ik dit oplossen?

Casper
Leerling bovenbouw havo-vwo - maandag 31 mei 2010

Antwoord

Misschien is het handig om $
\large {x \over {{}^5\log (x)}}
$ te schrijven als $
\large {{x \cdot \ln (5)} \over {\ln (x)}}
$?

Je krijgt dan:

$
\large f'(x) = {{\ln (5) \cdot \ln (x) - x \cdot \ln (5) \cdot {1 \over x}} \over {\ln ^2 (x)}} = {{\ln (5) \cdot \ln (x) - \ln (5)} \over {\ln ^2 (x)}} = {{\ln (5)} \over {\ln (x)}} - {{\ln (5)} \over {\ln ^2 (x)}}
$

..en dan zal 't wel lukken verder.

WvR
maandag 31 mei 2010

©2001-2024 WisFaq