Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Afgeleide en raaklijn

Hallo wIsfaqteam,

Een probleem.....

Een functie f(x)= x/(x+1) is gegeven en een punt P(1,2)
Hoeveel raaklijnen kan je tekenen door dit punt aan de grafiek van f(x)?
Bereken tevens deze raaklijn(en.)
Ik berekende de afgeleide :
f'(x) = 1/(x+1)2 en stel een raaklijn op met onbekende rico.
y-2=m(x-1) of y=mx-m+2
Ik wilde nu dit gegeven vergelijken met de afgeleide om alzo de rico of rico's te vinden maar dat brengt mij tot een derdegraadsvergelijking...
1/(x+1)2= mx-m+2 brengt ons tot:
mx3+mx2-mx+2x2+4x-m+1=0
IK dacht op een tweedegraadsvergelijking uit te komen, de discriminant=0 stellen(raaklijn) maar we komen er niet toe...
Maar er schort wellicht iets aan deze redenering?Of zoeken we het te ver misschien?

Groetjes,

Rik Le
Iets anders - donderdag 25 maart 2010

Antwoord

Ik zou y=m(x-1)+2 snijden met f en eisen dat er één oplossing is. Dat geeft dan één oplossing die voldoet. Dus geen afgeleide nodig.

WvR
donderdag 25 maart 2010

©2001-2024 WisFaq