Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Isomorfisme en basis

Ik probeer de volgende stelling te bewijzen:
Neem A:V-W een isomorfisme, met v1,v2,...,vn een basis in V. Dan is het systeem Av1,Av2,...,Avn een basis in W.

Ik heb hetvolgende gedaan:
We weten dat v1,...,vn een basis is van V, dus geldt:
a1v1+...+anvn = 0 = a1=..=an=0
We willen bewijzen:
a1Av1+...+anAvn = 0 = a1=..=an=0 (klopt dit?)

We kunnen bovenstaande uitwerken als:
a1Av1+..+anAvn = A(a1v1+..+anvn) = 0

Mijn probleem is nu het volgende:
hoe blijkt uit A(a1v1+..+anvn) = 0 dat a1v1+..+anvn = 0?

J Verh
Student universiteit - vrijdag 12 februari 2010

Antwoord

Beste Jolanda

Wat je wil doen, is een deel van de te bewijzen stelling. Opdat het beeld van die basis weer een basis is, moeten de beelden niet alleen lineair onafhankelijk zijn (dat wou je al doen) maar ze moeten ook voortbrengend zijn voor W.

Het feit dat "A(a1v1+..+anvn) = 0" impliceert dat "a1v1+..+anvn = 0", volgt uit het feit dat A een isomorfisme is. Sowieso wordt de nulvector afgebeeld op de nulvector en door injectiviteit is er geen andere vector die op de nulvector wordt afgebeeld.

Nu moet je nog aantonen dat als de v's voortbrengend zijn voor V, dat dan ook de A.v's voortbrengend zijn voor W (gebruik surjectiviteit).

mvg,
Tom

td
zondag 14 februari 2010

©2001-2024 WisFaq