Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Eerste en tweede afgeleide

Hallo, ik moet de afgeleide en tweede afgeleide bepalen van de volgende functie, maar ik weet niet of ik het wel goed doe.
y(x)=xe^(-1/2 x2 )
y'(x)=1∙e^(-1/2 x2 )+x∙e^(-1/2 x2 )∙-x
y''(x)=e^(-1/2 x2 )+1∙e^(-1/2 x2 )∙-1∙-x

Charlo
Student hbo - woensdag 9 december 2009

Antwoord

Ik denk dat je bij de tweede afgeleide in de fout gaat. Het is handiger om je eerste afgeleide eerst een beetje te fatsoeneren voordat je verder gaat. Uiteindelijk zou het dit moeten zijn:

$
\eqalign{
& y = xe^{ - {1 \over 2}x^2 } \cr
& y' = e^{ - {1 \over 2}x^2 } + x \cdot e^{ - {1 \over 2}x^2 } \cdot - x = e^{ - {1 \over 2}x^2 } - x^2 e^{ - {1 \over 2}x^2 } = e^{ - {1 \over 2}x^2 } \left( {1 - x{}^2} \right) \cr
& y'' = e^{ - {1 \over 2}x^2 } \cdot - x\left( {1 - x{}^2} \right) + e^{ - {1 \over 2}x^2 } \cdot - 2x = xe^{ - {1 \over 2}x^2 } \left( {x^2 - 3} \right) \cr}
$

Zo hou je ook een beetje het overzicht!

WvR
woensdag 9 december 2009

©2001-2024 WisFaq