Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Deelbaarheid

Hallo Wisfaq,

Stel dat voor 3 natuurlijke getallen a, b en c geldt dat a deler is van b2, b een deler van c2 en c een deler is van a2. Bewijs dan dat a7+b7+c7 deelbaar is is door het product abc...
Wie helpt er mij hiermede...
Groeten

rik le
Iets anders - vrijdag 16 oktober 2009

Antwoord

Dag Rik,

Als a een deler is van b2, dan is er een p met b2=ap en dus b6=a3·p3=a·a2·p3 of b7=ab·a2·p3.
c is deler van a2, dus er is een q met a2=cq.
gevolg: b7=ab·cq·p3. Dus is abc een deler van b7.
Met een analoge redenatie kan je aantonen dat abc ook deler is van a7 en ook van c7.
De rest kan je zelf wel afmaken denk ik.
Groeten,
Lieke.

ldr
vrijdag 16 oktober 2009

 Re: Deelbaarheid 

©2001-2024 WisFaq