\require{AMSmath} Integreren van een functie met twee variabelen Ik moet een functie integreren die er zo uit ziet: dE (i1, i2) = (A · i1 + B · i2) di1 + (B · i1 + C · i2) di2 het antwoord daarop zou moeten zijn: E (i1, i2) = 1/2 · A · i1 2 + B · i1 · i2 + 1/2 · C · i22 maar ik snap niet hoe ik dit moet integreren... ik dacht eerst aan Greens Theorem, maar dat was niet juist... hulp, iemand? Jonath Student universiteit - dinsdag 18 augustus 2009 Antwoord Waarom niet gewoon dE(i1,i2) = A i1 di1 + B ( i2 di1 + i1 di2 ) + C i2 di2 = 1/2 A d(i12) + B ( d(i1.i2) ) + 1/2 C d(i22) waaruit je antwoord volgt? cl dinsdag 18 augustus 2009 ©2001-2024 WisFaq
\require{AMSmath}
Ik moet een functie integreren die er zo uit ziet: dE (i1, i2) = (A · i1 + B · i2) di1 + (B · i1 + C · i2) di2 het antwoord daarop zou moeten zijn: E (i1, i2) = 1/2 · A · i1 2 + B · i1 · i2 + 1/2 · C · i22 maar ik snap niet hoe ik dit moet integreren... ik dacht eerst aan Greens Theorem, maar dat was niet juist... hulp, iemand? Jonath Student universiteit - dinsdag 18 augustus 2009
Jonath Student universiteit - dinsdag 18 augustus 2009
Waarom niet gewoon dE(i1,i2) = A i1 di1 + B ( i2 di1 + i1 di2 ) + C i2 di2 = 1/2 A d(i12) + B ( d(i1.i2) ) + 1/2 C d(i22) waaruit je antwoord volgt? cl dinsdag 18 augustus 2009
cl dinsdag 18 augustus 2009
©2001-2024 WisFaq