Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 59706 

Re: Een standaard integraal afleiden

Heel duidelijk, maar ... Als u de Standaardintegraal uitbreidt met de term " - ln a ", wordt dan bij gebruik van deze integraal de uitkomst van een opgave niet anders?
In een ander leerboek "Wiskunde voor het HBO", las ik dat
deze integraal bewezen werd door ln|x+Ö(x2+a2)|+C te differentieren. In dit geval wordt een uitbreiding met "-ln a" bij differentieren d/dx (-ln a) = 1/a .0 = nul.

Johan
Student hbo - donderdag 25 juni 2009

Antwoord

Beste Johan,

Een primitieve is nooit uniek, als je een primitieve F van een functie f gevonden hebt, dan is F+c met c een willekeurige constante ook een primitieve van f. Dit is natuurlijk omdat (F+c)' = F'+c' = f+0 = f, de afgeleide van een constante is 0.

De opgave was om aan te tonen dat de primitieve van deze vorm is:

ò 1/Ö(a2+x2) dx = ln|x+Ö(a2+x2)| + C.

Wel, dat heb je gedaan. Je had er die -ln(a) nog bij staan, maar die kan je gewoon samennemen met jouw integratieconstante tot een nieuwe integratieconstante, zodat het 'letterlijk' van bovenstaande vorm is.

mvg,
Tom

td
donderdag 25 juni 2009

©2001-2024 WisFaq