Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 59675 

Re: Kans op rood

Stel je zit met 3 groepen ballen A,B,C (stel elke groep bestaat uit 500 000 ballen) waaruit meerdere mensen ballen nemen, je weet echter niet hoeveel rode ballen erin zitten (stel 50 000 rode ballen). Je hebt hierbij 2 verschillende situaties, namelijk de volgende:

1) de eerste persoon kiest ervoor om in 1 keer 16 ballen te trekken.
2) de tweede persoon kiest ervoor om in groep A en B telkens 5 ballen te nemen, en uit groep C 6.

Wie maakt dan het meeste kans om 1 rode bal te nemen?

John
Iets anders - zondag 21 juni 2009

Antwoord

Bij zulke grote aantallen kan je de kansen wel benaderen alsof het met terugleggen is. De kans op een rode bal in elke groep is dan 1/10 en de kans op niet rood is dan 9/10.

1.
Als je alle 16 ballen uit groep A haalt dan kun je de kans op precies 1 rode bal berekenen met de binomiale verdeling:

X:aantal rood
p=1/10
n=16
Gevraagd: P(X=1)

q59691img1.gif

2.
Bij de tweede manier moet je dat dan ook doen, maar weer op dezelfde manier als bij je vorige vraag.

P(1 rode bal uit A)=P(1 van de 5 uit A is rood)·P(5 geel uit B)·P(6 geel uit C)
Dat doe je dan voor P(1 rood uit B) en P(1 rood uit C) ook. Optellen en je bent al weer een eind op weg.

Je zult zien dat het weinig uitmaakt. Ik kom voor beide uit op ongeveer 0,329.

WvR
zondag 21 juni 2009

©2001-2024 WisFaq