waar INT1 geldt voor |y|=|x|/2 en INT2 geldt voor |y|=|x|/2
en in INT1 geldt |f(x-y)|=O(1+(x2)) en in INT2 geldt dat |g(y)|=O(1+(x2)).(O is here big O)Dus, |f(x-y)|=M/(1+(x2)) voor x naar oneindig, en |g(y)|=N/(1+(x2))voor x naar oneindig.
Hieruit volgt
INT1+INT2= (M/(1+x2))·INT[g(y)dy]+(N/(1+x2))·INT[f(x-y)dy] Ik begrijp niet hoe ik nu verder moet.Ook begrijp ik niet waarom INT1 geldt voor |y|=|x|/2 en INT2 voor |y|=|x|/2.
Groeten,
Viky
viky
Student hbo - donderdag 7 mei 2009
Antwoord
Zowel INT[|g(y)|dy] als INT[|f(x-y)|dy] zijn eindig, dus bij elkaar krijg je een vast getal maal 1/(1+x2) als bovengrens. Er staan nogal wat fouten in je uitwerking; de x is vast, dus je kunt hem niet naar oneindig laten gaan. Op zijn best zou je dus in plaats van ``O(1/(1+y2)) voor y naar oneindig'' moeten hebben maar voor de uitwerking heb je echt een vast getal maal 1/(1+y2) hebben. De verdeling in twee stukken |y|=|x|/2 en |y|=|x|/2 is gekozen om makkelijke afschatingen te maken. In INT2, met |y|=|x|/2, geldt |g(y)|=M/(1+y2)=M/(1+(x/2)2)=4M/(4+x2); en omdat de integraal van |f(x-y)| eindig is kun je INT2 overschatten met K2/(4+x2) met K2 een vast getal. In INT1, met |y|=|x|/2, geldt |f(x-y)|=N/(1+(x-y)2)=N/(1+(x/2)2)=4N/(4+x2); nu gebruik je dat de integraal van |g(y)| eindig is om een overschatting van INT1 te vindem van de vorm K1/(4+x2). Tezamen geeft dit dus deze bovengrens voor de convolutie: (K1+K2)/(4+x2). Overigens kun je de absolute waarde van de convolutie afschatten met int(1/(1+(x-y)2)1/(1+y2),dy) (maal een constante) en die laatste integraal even uitrekenen (er kunt Pi/2/(4+x2) uit).