Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Vereenvoudigen van incentive constraint

Goedendag,

Ik moet in een economisch model een incentive constraint opstellen. Wat dat betekent is niet zo heel belangrijk, maar ik moet de volgende formule zo vereenvoudigen dat ik de waardes van d definieer waarvoor de ongelijkheid klopt:

5000 / (1-d)(2n) ¡Ý ((n+1) ¡¤ 100) 2 / (16n)2

Ik heb nu het volgende gedaan (uitleg steeds in het engels):

Divide by 5000:
1 / (1-d)(2n) ¡Ý 2(n+1)2 / (16n2)
Multiply by n:
1 / (1-d)2 ¡Ý 2(n+1)2 / 16n
Reverse the fractions:
2¡¤(1-d) ¡Ü 16n / (2(n+1)2)
2 ¨C 2d ¡Ü 16n / (2(n+1)2)
Minus 2:
-2d = ¡Ü 16n / (2(n+1)2) ¨C 2
Divided by -2:
d ¡Ý 4n/(n+1)2 - 2

Mijn kennis van algebra is echter niet meer zo fantastisch en ik heb dan ook sterk het idee dat ik iets fout doe, vooral omdat bij vergelijkbare modellen in het boek de uitkomst iets anders is. Kunnen jullie zien of de vereenvoudiging die ik doe qua algebra kloppend is?

Alvast heel erg bedankt!

Daniël
Student universiteit - zaterdag 14 maart 2009

Antwoord

Daniël,

Twee opmerkingen: In de eerste regel staat(16n)2, in de tweede regel 16n2, moet dus zij 162n2.

Voorlaatste regel:delen door -2 is vermenigvuldigen met -1/2. Dus laatste regel wordt: d1-4n/(n+1)2, maar 4 moet 64 zijn.

kn
zondag 15 maart 2009

©2001-2024 WisFaq