Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 58348 

Re: Afstand van een punt tot de rechte

bedankt voor de aanzet. het eerste deel heb ik kunnen oplossen.
co(M) = (11/2, 3)
rico AB = (y2-y1)/ (x2-x1) = 4/7
rico d = -7/4
d $\leftrightarrow$ y-y1 = m(x-x1)
d $\leftrightarrow$ y-3 = -7/4 (x-11/2)
d $\leftrightarrow$ y-3 = -7/4x + 77/8
d $\leftrightarrow$ 8y-24 = -14x + 77
d $\leftrightarrow$ 8y + 14x - 101 = 0

echter de tweede hint is mij niet helemaal duidelijk. wat bedoel je met 'stop dan dat verband in de formule voor de afstand tot a en los op naar x ?

luc la
3de graad ASO - zaterdag 14 februari 2009

Antwoord

Je kan nu op twee manieren verder gaan.

1) Schrijf de eis uit dat een punt (x,y) op afstand 3 ligt van 4x-3y+1=0

|4x-3y+1|/√(42+32) = 3
|4x-3y+1|=15
4x-3y+1 = 15 of 4x-3y+1= -15

en laat die twee rechten snijden met d. Twee stelsels van twee vergelijkingen met twee onbekenden.

2) Substitueer meteen de waarde van y die volgt uit de vergelijking van d in de vergelijking van de afstand, zodat er staat

|4x-3(...iets met x...)+1| = 15

en wat aanleiding geeft tot twee keer een vergelijking in een onbekende.

Probeer ze misschien alle twee eens.

cl
zondag 15 februari 2009

©2001-2024 WisFaq