Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 41732 

Re: Gelijke hoeken in figuur na veranderen door matrix

A=(a1,a2) en B=(b1,b2)
Geldt alleen als E(1,0) is en D(0,1) is toch?
Is het bijvoorbeeld E(3,5) en D(4,2) dan werkt A=(a1,a2) en B=(b1,b2) niet meer. Klopt toch?

BTW wat eigenschappen die mij goed lijken maar zijn ze dat ook:

-a1 en b2 moeten gelijk zijn.
Als E en D beide een 0 in de vector hebben:
-a2 en b1 moeten 0 zijn.

J
Leerling bovenbouw havo-vwo - zaterdag 7 februari 2009

Antwoord

Ik kies E(1,0) en D(0,1). Dus niks anders.
Je voorwaarden zijn te restrictief.

Ga er nu eens vanuit dat driehoek AOB rechthoekig moet zijn in O en dat OA gelijk moet zijn aan OB. Dan geldt zeker dat driehoek OAB gelijkvormig is met driehoek OED.
Met herhaald gebruik van de Stelling van Pythagoras zou je dan een heel eind moeten kunnen komen.

hk
zaterdag 7 februari 2009

©2001-2024 WisFaq