Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Omtrek driehoek

Ik weet dat van alle driehoeken met dezelfde omtrek de gelijkzijdige driehoek de grootste oppervlakte heeft, maar hoe bewijs je dat? Alvast bedankt!

Marco
Leerling bovenbouw havo-vwo - donderdag 15 januari 2009

Antwoord

Marco,
Hopelijk is bekend dat de oppervlakte O=Ö(s(s-a)(s-b)(s-c) met a,b en c de zijden van de driehoek en a+b+c=2s. Uit deze formule volgt dat
O2/s=(s-a)(s-b)(s-c). Merk op dat s-a+s-b+s-c=s. Nu geldt de volgende ongelijkheid: voor positieve p,q en r is pqr(p+q+r)3/27 en het gelijkteken geldt alleen voor p=q=r. Als we dit toepassen op het rechterlid van O2/s vinden we dat O2/s(s/3)3, dus Os2/(3Ö3). Het gelijkteken geldt voor s-a=s-b=s-c waaruit volgt a=b=c=2s/3. Driehoek dus gelijkzijdig.

kn
zaterdag 17 januari 2009

©2001-2024 WisFaq