Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Gelijkzijdige driehoek

Gegeven : de parabool x2=2py
Gevraagd : Bepaal de coördinaten van de punten A en B die
samen met top O een gelijkzijdige driehoek
bepalen.

Oplossing : De top is (0,0). Ik weet dat er door het'tekort'
aan gegevens een parameter zal worden gebruikt
in de algemene voorstelling van deze punten
(vermoedelijk p). Verder zit vast...

Kan iemand me aub helpen?

Dank bij voorbaat!

Brent
3de graad ASO - donderdag 11 september 2008

Antwoord

dag Brent,

Het gaat hier om een liggende parabool.
Het staat er niet maar ik neem aan dat A en B op de parabool moeten liggen.
Laten we de gezochte A boven de x-as kiezen. Het punt B is dan het spiegelbeeld van A in de x-as.
We kiezen de x-coördinaat van A (dezelfde dus als die van B) als onbekende a, die we gaan uitdrukken in p.
De y-coördinaat van A is dan gelijk aan a2/2p.
De y-coördinaat van B is dan gelijk aan -a2/2p.
Hoe groot is nu de afstand van A tot B?
En hoe groot is de afstand van O tot A?
Deze twee afstanden moeten aan elkaar gelijk zijn.
Dit geeft een vergelijking, waaruit je a kunt oplossen (uitgedrukt in de parameter p).
Lukt dat?
succes,

Anneke
donderdag 11 september 2008

 Re: Gelijkzijdige driehoek 

©2001-2024 WisFaq