Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 56400 

Re: Afgeleiden van logaritmische functies

hoi, ik kom niet het juiste uit:
wat ik doe:
y' = e ^(lnx*sinx) *lnx * sinx +e^(lnx*sinx)*lnx * cos x
= x^sinx * lnx * sin x + x^sinx * lnx
wat is er verkeerd?
groetjes en alvast erg bedankt

yan
3de graad ASO - zaterdag 6 september 2008

Antwoord

Laten we de exponent ln(x).sin(x) voor de duidelijkheid even afkorten als
p(x). Dan heb je dus te maken met de functie f(x) = ep(x).
Volgens de regeltjes om afgeleiden te bepalen, geldt nu f'(x) = ep(x).p'(x) waarbij je de factor p'(x) aan de kettingregel te danken hebt.

Laten we eerst maar de afgeleide van functie p bepalen en daarna alles aan elkaar plakken.
Wel, met de produktregel krijg je p'(x) = [ln(x)]'.sin(x) + ln(x).[sin(x)]' wat oplevert p'(x) = (1/x).sin(x) + ln(x).cos(x).

Omdat eln(x).sin(x) = xsin(x) volgens hetgeen ik je eerder schreef, ben je nu wel zo'n beetje op het gewenste antwoord uitgekomen, lijkt me.
Kom overigens gerust terug als er toch nog iets onduidelijk is voor je.

MBL

MBL
zaterdag 6 september 2008

©2001-2024 WisFaq