Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Stelsel met 2 vergelijkingen

De eerste vergelijking is
2·a2+2·b2+2·a+2·b+1=0
De tweede vergelijking is
a·b=?

Nu gaat het erom een oplossing te vinden voor dit vraagteken zodat het stelsel niet strijdig is. Hiervoor zijn er vijf mogelijke antwoorden: -0.5 -0.25 0.25 0.5 1

Ik heb geen idee: het enige dat ik kon afleiden was dat a en b niet beiden strikt positief kunnen zijn...

Kan iemand me alstublieft helpen of een tip geven?

Dank bij voorbaat!

Brent
3de graad ASO - maandag 1 september 2008

Antwoord

Dag Brent,

Het feit dat je te maken hebt met a2 en b2 en a en b in de eerste vergelijking, en dat er iets gevraagd is over ab in de tweede, zou je eraan kunnen doen denken dat je op zoek moet gaan naar kwadraten, merkwaardige producten.

Ik had eerst de eerste vergelijking herschreven naar
(a+b+1)2+(a+b)2=4ab
Daaruit volgt meteen dat ab positief moet zijn, maar veel verder geraakte ik er niet mee...

Maar als je één tekentje verandert, krijg je
(a+b+1)2+(a-b)2=0 (tel maar na dat dit hetzelfde is als de eerste vergelijking)
En daarmee kan je allicht wel de oefening volledig oplossen

Groeten,
Christophe.

Christophe
dinsdag 2 september 2008

©2001-2024 WisFaq