Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 56178 

Re: Convergerende of divergerende integraal

Hallo,

Maar nu kun je dus zeggen dat 1/(2x2) convergeert als x®¥ en als x®-¥, maar dat zegt dan toch nog niets over (cos(x2+1))/x2 want deze functie is groter dan die andere... Ik snap ook het nut van dat kleine interval niet helemaal, want je kunt toch meteen zien dat de functie convergeert als x®¥ en als x®-¥?

Tine A
Student universiteit - vrijdag 1 augustus 2008

Antwoord

Beste Tine,

We zijn tot de afschatting van 1/(2x2) gekomen op een interval rond 0, niet op oneindig. Zoals ik zei, is er daar voor de oorspronkelijke integraal geen probleem. Als je dat zelf hard wil maken, gebruik dan de afschatting dat cos(x2+1)1 zodat:

cos(x2+1)/x2 1/x2

Maar daar zit het probleem dus niet. Wat weet je over de convergentie van 1/(2x2) rond de oorsprong? Wat zegt dat over de oorspronkelijke integraal, met onze eerdere afschatting?

mvg,
Tom

td
vrijdag 1 augustus 2008

 Re: Re: Convergerende of divergerende integraal 

©2001-2024 WisFaq