Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Variantie (uniform distributie)

beste wisfaq, i probeerde de variantie van een uniforme distributie af te leiden uit nieuwsgierigheid maar ik kom er niet uit op s2=(b-a)2/12

∫(x-µ)^2 f(x)dx met f(x)=1/b-a)en ∫ van b tot a

∫(x-µ)2 f(x)dx
= ∫(x-µ)2 * x/(b-a)
= ∫ (x3 - 2x2µ + µ2x)/(b-a)

vul ik de waardes b en a in dan krijg ik
∫ ((b3 - 2b2µ - µ2b) / (b-a)) - ((a3 - 2a2µ - µ2a) / (b-a))

nu weet ik dat µ=(a+b)/2 maar ik kom hiermee niet uit, heb ik iets over het hoofd gezien?

Mvg Y

Yip
Student universiteit - zondag 6 april 2008

Antwoord

1. Er staat een x te veel in de tweede integraal in je berekening.
2. Je rekent de integraal uit zonder te primitiveren.

kphart
zondag 6 april 2008

©2001-2024 WisFaq