Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 55039 

Re: Re: Re: Snijpunten

Ik heb net even een nieuwe plot gemaakt met Wiskit, maar het was niet goed mogelijk om een goed beeld van de precieze ligging van snijpunten met een negatieve x. Wel heb ik op grond van die plot het idee dat er tussen bijvoorbeeld -5 en 25 ook snijpunten met een negatieve x aanwezig zijn, maar de grafiek van ex ligt daar te dicht tegen de X-as aan om dat goed te kunnen zien. Er zijn echter inderdaad zowel positieve als negatieve waarden van x die een snijpunt geven.
Ik heb nog geprobeerd om de vergelijking tan(x) = ex op te lossen door gebruik te maken van tan(x) = -i + 2·i/(e2·i·x + 1) en ex = e-i(i·x - 2·k·p)), maar dit lukt eigenlijk alleen met behulp van een geschikt computeralgebrapakket.

Arno v
Iets anders - zondag 30 maart 2008

Antwoord

Ik heb ook maar even Wiskit gepakt (als maker van dat programma)
Je kunt de opdracht nulpunt gebruiken om de vergelijking tan(x)-exp(x)=0 numeriek op te lossen.
Onderstaand programmaatje geeft je de oplossingen van deze vergelijking.
 
for(b;-pi;-10*pi;-pi)
nulpunt(tan(x)-exp(x);b-0.1;b+0.1;b;1e-20;a)
schrijfregel(u;b)
schrijf(t; )
schrijf(u;a)
next

resultaat:
 
b a
-3.14159265358979324 -3.09641230491364388
-6.28318530717958648 -6.2813143694914645
-9.42477796076937972 -9.42469725473878408
-12.566370614359173 -12.5663671270046551
-15.7079632679489662 -15.7079631172472159
-18.8495559215387594 -18.8495559150263473
-21.9911485751285527 -21.9911485748471258
-25.1327412287183459 -25.1327412287061844
-28.2743338823081391 -28.2743338823076136

En zoals te verwachten viel liggen de snijpunten voor negatieve x ongeveer bij x=k*pi (k0 en geheel).


hk
maandag 31 maart 2008

©2001-2024 WisFaq