Ik moet de inhoud berekenen van een lichaam met als grondvlak een vierkant, de hoekpunten liggen in (1,0), (-1,0), (0,1) en (0,-1). Loodrecht op de x-as staan halve cirkels. Kon ik het vierkant maar in een formule uitdrukken. De halve cirkels lukt wel. Waarna de integraal op te stellen is.
Jack
Student hbo - donderdag 14 februari 2008
Antwoord
dag Jack,
Als ik het goed begrijp, gaat het hier om twee halve kegel-delen, die met hun grondvlakken tegen elkaar liggen. Je kunt de figuur opdelen in plakjes door loodrecht op de x-as te snijden, en deze plakjes zijn dan halve cirkelschijven. Als je begint te snijden bij x=-1, dan neemt de straal van de cirkel eerst toe, totdat x=0, en daarna neemt de straal weer af. Voor het gemak bereken je de helft van de inhoud, waarbij x loopt van 0 tot 1. De vraag is dus eigenlijk: hoe bepaal je de straal van de halve cirkelschijf, afhankelijk van x. Die straal is dan gelijk aan 1-x. Lukt dat verder? groet,