Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Herleiden

Hallo,
Ik heb nogal moeite met goniometrie, voornamelijk bij vragen waarbij je formules moet herleiden. Zo kom ik niet goed uit de volgende vraag:

De beweging van een punt in het Oxy-vlak wordt voor 0t2p gegeven door:
x = cos 15t + cos 2t
y = sin15t + sin 2t

a. Toon aan, dat de bewegingsvergelijkingen kunnen worden herleid tot
x = 2 cos (6,5t) · cos (8,5t)
y = 2 cos (6,5t) · sin (8,5t)

b. Bij het doorlopen van de baan voor 0 t 2p passeert het punt een aantal keren (0,0). Bereken dit langs algebraïsche weg.

Vooral de laatste vraag vind ik lastig. Is hier ook een stappenplan voor of iets dergelijks?
Alvast bedankt voor de hulp,
Margot

Margot
Leerling bovenbouw havo-vwo - zondag 13 januari 2008

Antwoord

Op je formulekaart staat een aantal somformules...

q53863img1.gif

Nu moet gelden dat:

2cos(6,5t)·cos(8,5t)=0
2cos(6,5t)·sin(8,5t)=0

Wanneer is dat nu het geval!?
Als cos(6,5t)=0 dus:



Zie 6. Goniometrische vergelijkingen oplossen

Daarmee zou het (zonder al te veel moeite) moeten lukken, hoop ik...

WvR
zondag 13 januari 2008

©2001-2024 WisFaq