Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

V(x-y)

Ik heb het volgende schema:
x y
0 1
0 0,3 0,1
2 0,1 0,5

En de covariantie is 0,28.
Nu moet ik het volgende uitrekenen:
√(x-y)
Ik heb als variantie voor x (immers ik het goed berekent heb)√0,96, en voor y √0,24
Ik weet dat wanneer het √(x+y) is dat je dan Var X + Var Y + 2 cov (x,y) moet uitrekenen.
Ik nam aan dat het bij dan bij √(x-y) dan Var x - Var Y + 2 cov (x,y) moest zijn, maar ik kom dan niet op het juiste antwoord...
Welke formule moet ik dan gebruiken?
Enorm bedankt alvast

Amber
Student universiteit - zondag 2 december 2007

Antwoord

Je formule is dan ook fout: Var(X-Y) = Var(X)+Var(Y)-2cov(X,Y)

Cov(X,Y) is inderdaad 0,28 (maar bedenk wel dat dat geen extra gegeven is, je haalt dat uit het schema). De varianties zijn juist als je tenminste de worteltekens eraf haalt (zie je handboek voor het verschil tussen variantie en standaardafwijking).

Een andere manier om de vraag te beantwoorden zou zijn een schema op te stellen voor X-Y

X-Y=
-1 met kans 0.1
0 met kans 0.3
1 met kans 0.5
2 met kans 0.1

en hieruit "rechtstreeks" (dwz zonder om te lopen via X en Y afzonderlijk) de variantie van X-Y te bepalen. Doe dat eens ter controle.

cl
zondag 2 december 2007

©2001-2024 WisFaq