Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Rol van deteminant vermenigvuldigen matrices

Wanneer je een 2x2 matrix (A) bijvoorbeeld 4 maal met zichzelf vermenigvuldigd dus tot A5, en dit zelfde doet maar dan met een kleine afwijking $\Delta$x in alleen de eerste matrix, dan vind je dat de afwijking door werkt als $\Delta$x´(det(A))4
Dit geldt voor matrices die ingevuld zijn met wegingsfactoren, waarbij de som van iedere rij dus 1 is.

Bij een 3x3 matrix lijkt er ook een algemene formule te schrijven voor de doorwerking van een afwijking, waarbij de determinant een rol speelt. Ik heb deze formule echter nog niet kunnen vinden, kan iemand mij helpen?

Boj
Student universiteit - woensdag 5 september 2007

Antwoord

Beste Boj,

De determinant heeft een aantal elegante eigenschappen waardoor de oplossing van jouw probleem eenvoudiger is dan het lijkt.

Ten eerste: De determinant van een product is het product van de determinanten. Dus: det(A.B) = det(A).det(B). In jouw geval volgt hieruit: det(A5) = det(A)5.

Ten tweede: De determinant is lineair in de rijen en kolommen. Als je één rij/kolom verandert kun de verandering van de determinant uitrekenen door de rij/kolom vervangen door alleen de verandering en dan de determinant uit te rekenen. In jouw geval verander je (als ik het goed begrepen heb) één element (aij) van de matrix. In dat geval betekent heb bovenstaande: $\Delta$det(A) = constante·$\Delta$x. Die constante heeft overigens een naam. Het heet de codetermiant Aij.

Met deze twee samen volgt (als je alleen de eerste matrix verandert): $\Delta$det(A5) = constante·$\Delta$·(det(A)4).

Groet. Oscar.

os
zaterdag 8 september 2007

©2001-2024 WisFaq