\require{AMSmath} Twee exponentiële vergelijkingen a. 2x=44x+6b. 272x = (1/3)-x+2Wat is x? J. Student universiteit - zaterdag 1 september 2007 Antwoord a. \eqalign{ & 2^x = 4^{4x + 6} \cr & 2^x = \left( {2^2 } \right)^{4x + 6} \cr & 2^x = 2^{8x + 12} \cr & x = 8x + 12 \cr & 7x = - 12 \cr & x = - 1\frac{5} {7} \cr} b. \eqalign{ & 27^{2x} = \left( {\frac{1} {3}} \right)^{ - x + 2} \cr & \left( {3^3 } \right)^{2x} = \left( {3^{ - 1} } \right)^{ - x + 2} \cr & 3^{6x} = 3^{x - 2} \cr & 6x = x - 2 \cr & 5x = - 2 \cr & x = - \frac{2} {5} \cr} WvR zondag 2 september 2007 ©2001-2025 WisFaq
\require{AMSmath}
a. 2x=44x+6b. 272x = (1/3)-x+2Wat is x? J. Student universiteit - zaterdag 1 september 2007
J. Student universiteit - zaterdag 1 september 2007
a. \eqalign{ & 2^x = 4^{4x + 6} \cr & 2^x = \left( {2^2 } \right)^{4x + 6} \cr & 2^x = 2^{8x + 12} \cr & x = 8x + 12 \cr & 7x = - 12 \cr & x = - 1\frac{5} {7} \cr} b. \eqalign{ & 27^{2x} = \left( {\frac{1} {3}} \right)^{ - x + 2} \cr & \left( {3^3 } \right)^{2x} = \left( {3^{ - 1} } \right)^{ - x + 2} \cr & 3^{6x} = 3^{x - 2} \cr & 6x = x - 2 \cr & 5x = - 2 \cr & x = - \frac{2} {5} \cr} WvR zondag 2 september 2007
WvR zondag 2 september 2007
©2001-2025 WisFaq