Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Moeilijke integraal

Dag Wisfaq team,
Ik heb behoorlijk last met volgende integraal:
$\int{}$xexsin(x)dx=

Partiële integratie bracht me tot het volgende:
stel ex=u ; du=exdx en dv= xsin(x)dx en v=-xcos(x)+sin(x)
I= -xexcos(x) +exsin(x) -$\int{}$(-xcos(x)+sin(x))exdx
I= -xexcos(x)+exsin(x)+(·)$\int{}$xcos(x)exdx-(··)$\int{}$exsin(x)dx
Uitwerken (·) geeft:
ex(xsin(x)+cos(x))-$\int{}$(xsin(x)+cos(x))exdx
Uitwerken (··) geeft:
$\int{}$exsin(x)dx
=-$\Delta$exd(cos(x))
=-excos(x)+$\int{}$cos(x)exdx
En hoe moet het nu verder of ben ik verkeerd bezig.
Vriendelijke groeten,

Lemmen
Iets anders - zaterdag 28 juli 2007

Antwoord

Beste Rik,

Het is wat lastig schrijfwerk en wordt ook nogal snel onduidelijk. Ik begin liever even van in het begin. Je kan de partiële integratie natuurlijk op meerdere manieren uitvoeren, ik kies er voor om de factor x via afleiden direct kwijt te spelen.

Ik noteer g = $\int{}$sin(x)exdx, dan volgt:

$\int{}$xsin(x)exdx = $\int{}$xdg = xg - $\int{}$gdx

De integraal is dus volledig opgelost door g en $\int{}$gdx te bepalen.
Daarbij is g zelf opnieuw met partiële integratie te doen.

mvg,
Tom

td
zaterdag 28 juli 2007

©2001-2024 WisFaq