Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Associatief maar niet commutatief

Hoe kan een groep wel associatief zijn (voor vermenigvuldiging danwel optelling), maar tegelijkertijd niet commutatief?

thijs
Iets anders - dinsdag 6 maart 2007

Antwoord

Een verzameling met een bewerking vormt een groep als aan 4 eigenschappen is voldaan:
1. de bewerking is inwendig
2. de bewerking is associatief
3. er bestaat een neutraal element
4. ieder element heeft een invers element

Als de bewerking daarbij ook nog commutatief is spreekt men van een commutatieve groep.

Een voorbeeld van een commutatieve groep is de verzameling van de 2x2-matrices met de optelling.
Een voorbeeld van een (niet commutatieve) groep is de verzameling van de 2x2-matrices met de vermenigvuldiging.

LL
dinsdag 6 maart 2007

©2001-2024 WisFaq