Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Twaalf personen in vier kamers

Ik heb van een vriend uit een wiskundige richting een oefening op kansrekenen gekregen. Kunnen jullie dit raadseltje berekenen, aangezien ik zelf (nog) niets over dit onderwerp weet?

Er zijn 12 personen. Er zijn 4 kamers voor 3 personen elk. Hoeveel combinaties zijn er mogelijk als je weet dat 2 van deze leerlingen niet in dezelfde kamer willen verblijven?

Leys B
3de graad ASO - dinsdag 22 oktober 2002

Antwoord

Hoi,

C(n,m)=n!/[m!.(n-m)!]
n!=n.(n-1).(n-2). .. .2.1

Laten we eerst de voorwaarde van die twee 'vijanden' vergeten. C(12,3) mogelijkheden om de eerste kamer te vullen, C(9,3) voor de tweede enzovoort. In totaal dus n0=C(12,3).C(9,3).C(6,3).C(3,3) mogelijkheden.

Als we de twee vijanden wel samen zetten in eenzelfde kamer zijn er 4 mogelijkheden om die kamer te kiezen, C(10,1) om een derde man te kiezen, C(9,3) manieren voor een tweede te vullen, C(6,3) voor een derde en C(3,3) voor de vierde. In totaal dus n1=4.C(10,1).C(9,3).C(6,3).C(3,3) mogelijkheden waarbij ze wel samenzitten.

Het antwoord op je vraag is n0-n1.

Groetjes,
Johan

andros
dinsdag 22 oktober 2002

©2001-2024 WisFaq