Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Impliciet schrijven

als ik de functie:

x2+xy+2y3-4=0

wil differentieren naar x (voor het opstellen van de vergelijking van de raaklijn in het punt (-2,1)), moet ik hem afleiden naar x.

dan krijg ik klaarblijkelijk:

2x+y+xy'+6(y2)y'

Ik snap nu niet hoe ik aan xy' en 6(y2)y' moet komen.

Ok, hier valt de systematiek nog wel te doorzien misschien, maar ik krijg ook vragen waar de cos/sin in verwerkt zit.. en dan nog ingewikkelder qua structuur :)

Zou u me uit kunnen leggen wat er gebeurd?

Ronald
Student universiteit - maandag 15 januari 2007

Antwoord

Eigenlijk moet je dit zien als een soort van som-regel:

Stel dat er staat:
f(x).g(x)=0
en je gaat links en rechts differentiëren, dan krijg je:
[f(x).g(x)]'=[0]'
ofwel:
f'(x).g(x)+f(x).g'(x)=0

Nu staat er niet f(x).g(x)=0, maar
x2+xy+2y3-4=0
De y die hier staat, is geen onafhankelijke variabele als x, maar
y is een ·functie· van x. Dus y=y(x). Een functie die je a priori niet weet.

Differentiëren we nu de bovenstaande vergelijking links en rechts naar x, dan krijgen we:
[x2+xy+2y3-4]'=[0]' $\Leftrightarrow$
[x2]'+[x.y]'+[2y3]'-[4]'=0 $\Leftrightarrow$
de term x.y moeten we met de produktregel differentiëren, en de 2y3 volgens de kettingregel. (immers y=y(x))
$\Rightarrow$ 2x + y + x.y' + 6y2.y' = 0
$\Leftrightarrow$ y'= (-2x-y)/(x+6y2)

Vul je in deze breuk de coördinaten (dus de x EN y waarde in van het betreffende punt) dan levert je dat de steilheid van de raaklijn in dat punt.

Is het zo iets duidelijker geworden?

groeten,

martijn

mg
maandag 15 januari 2007

©2001-2024 WisFaq