Ik weet niet goed hoe ik aan volgende opdracht moet beginnen!
Jan wil voor zijn drie konijnen een loophok maken met drie afgescheiden loopruimten, zoals afgebeeld in de figuur. Voor het maken van de randen en de afscheidingswanden beschikt hij over 21m draad die hij volledig wil gebruiken.
De vraag is nu Voor welke afmetingen a en b is de oppervlakte van het hok zo groot mogelijk.
Ik wou hierbij een tekening bijvoegen maar dit lukte niet. Daarom beschrijf ik het even.
Het is een rechthoek die onderverdeeld is in een kleinde en grote rechthoek door middel van een verticale streep. De grote rechthoek is nog eens onderverdeeld in twee gelijke rechthoeken. Door een horizontale streep, die loodrecht en door het midden gaat van de vericale streep. De breedte van de grote rechthoek is b en van de kleine rechthoek a. De lenge van de grote rechtoek is langs beide zeiden van de horizontale streep gelijk aan a dus in de totale lengte gelijk aan 2a. Ik denk dat ik dit moeten oplossen met het maximun probleem maar ik weet niet hoe ik verder moet.
Met vriendelijke groet,
Frederique
Fréder
2de graad ASO - zaterdag 11 november 2006
Antwoord
1. Je kunt de totale lengte van alle randen en afscheidingswanden uitdrukken in a en b. Dit moet in totaal 21 meter zijn. Met die formule kan je a uitdrukken in b of b uitdrukken in a.
2. De oppervlakte van het hok kan je ook uitdrukken in a en b. Vervang vervolgens a door de uitdrukking b van 1. of vervang b door de uitdrukking in a van 1. Je hebt dan een functie voor de oppervlakte uitgedrukt in a of in b... afgeleide, afgeleide nul stellen, tekenverloop, etc...