Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

De unie van open intervallen

Beste wisfaq.

Ik heb een vraag waarvoor ik niet echt een bewijs kan vinden: kan de unie van open intervallen een gesloten interval opleveren.
Als dit kan, kunt U mij dan een voorbeeld geven en als het niet kan, kunt U mij dan een bewis geven.

Wat ik juist bedoel met de unie van intervallen leg ik uit aan de hand van een voorbeeld:
U(nÎ)[1/n,1]=]0,1]

Alvast bedankt.

Niels
Student universiteit België - zaterdag 21 oktober 2006

Antwoord

Nee, dit is niet mogelijk. Het begin van het bewijs:

Als een punt x in de unie van intervallen ligt, dan moet het in minstens 1 van de intervallen liggen. Stel nu dat we een (eventueel oneindig) aantal open intervallen hebben, die als unie het interval [x,y] hebben. x moet dan in 1 van de open intervallen liggen. Bekijk dit interval eens.

AE
zaterdag 21 oktober 2006

©2001-2024 WisFaq