Ik ben opzoek naar de wiskundige beschrijving voor de volgende getallenrij:
Rij 1 : 0,2,5,9,14,20,...
Maar ik loop echt vast bij de volgende regel:
a(n) = a(n-1)+1+n (1)
of:
a(n-1) = a(n-2)+1+n-1 (2)
met (2) in (1) levert op:
a(n)= a(n-2)+1+n-1+1+n = a(n-2)+1+2n
Met hier bovenstaande betrekking ben ik nog steeds afhankelijk van de voorafgaande getal a(n-2), hoe zal de expliciete uitdrukking eruitziet?
Franco
Leerling bovenbouw havo-vwo - donderdag 10 oktober 2002
Antwoord
Op zich is de recurrente betrekking die je geeft een keurige wiskundige beschrijving van de rij die je geeft. Je zou er dan eigenlijk ook nog de waarde van 1 element bij moeten geven en dan is de rij netjes gedefinieerd:
a(0) = 0 a(n) = a(n-1) + n + 1
Maar dat is vast niet wat je bedoelt. Ik gok dat je eigenlijk een formule wilt waarmee je direct de waarde van een element kunt berekenen en niet eerst alle voorafgaande moet berekenen.
Daar zijn een aantal mogelijkheden voor. Ik zal er hier 3 geven. Dan kun je zelf kiezen welke je het makkelijkste begrijpt.
In gedachten kun je net zo lang doorgaan tot je bij a(0) uitkomt. Wat je dan eigenlijk krijgt is de som van de getallen 1 tot en met n en dan nog n keer + 1. Schrijf het maar eens uit voor bijvoorbeeld a(4) en a(5). Dus: a(n)=å1n(x) + n {De som van de getallen 1 tot en met n +n}
2. Maar je kunt het ook anders bekijken: Ken je de rij 1,3,6,10,15,21 ? Daar lijkt jouw rij wel heel erg op (trek er bij elk element maar eens eentje af)
Dan zou je ook kunnen schrijven: a(n)=å1n+1(x) - 1 {de som van de getallen 1 tot en met n+1 verminderd met 1}
Wat precies hetzelfde is als de vorige formulering.
3. Deze oplossing kreeg ik van een collegabeantwoorder en heeft niet de lastige sommatie in zich:Als je goed naar rij 1 kijkt, zie je dat de verschillen van de verschillensteeds gelijk aan 1 zijn. Dit duidt op een kwadratisch verband. Stel dus: a(n) = a·n2 + b·n a(1) = 2 geeft a + b = 2 a(2) = 5 geeft 4a + 2b = 5
Uit deze twee vergelijkingen vind je dat a = 1/2 en b = 11/2. De expliciete formule is dus:
a(n) = 0,5n2 + 1,5n
Zo zie je maar weer dat er vele wegen naar Rome leiden.