Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Constante

Is de volgende constante al bekend in de wiskunde?

-n + 0!^(1/(2^0)) + 1!^(1/(2^1)) + 2!^(1/(2^2)) + 3!^(1/(2^3)) ... + n!^(1/(2^n)) met n--¥

dus zeg maar å¥(--erboven) N=0 (--eronder) -n + n!^(1/(2^n)). Ik heb het tot n=20 berekend en toen was het ruim 2,1.
Op internet heb ik hier niks over kunnen vinden..
En mocht deze constante nog niet bestaan, kan ik hem dan niet ergens aanmelden of iets dergelijks? En voor de ijverige wiskundigen die deze vraag lezen; toon eventuele irrationaliteit en transcedentie maar aan

Groetjes Wouter

Wouter
Leerling bovenbouw havo-vwo - donderdag 3 augustus 2006

Antwoord

We definieren eerst één element uit de rij:

u(n) = n!^(2^-n)

Als n naar oneindig gaat, gaat u(n) naar 1. Immers, 2^-n gaat naar 0 en x^0=1. Als je n termen optelt, krijg je dus n keer 1; aan het begin had je die er al vanaf getrokken, dus zal de waarde niet extreem groeien.

Omdat n=1, n=2, n=3, n 20 wel significante decimalen opleveren, kom je op 2,1 uit. Na 59 stappen heeft mijn computerprogramma (JavaScript) er echter geen zin meer in; de waarde is dan 2.1006...

Overigens is het zo dat eenheden, constanten etc. tegenwoordig niet meer naar mensen vernoemd mogen worden. Sorry, maar eeuwige roem door een constante, zul je dus niet meer krijgen.

Vincent
zondag 6 augustus 2006

©2001-2024 WisFaq