\require{AMSmath} 3 vergelijkingen met 2 onbekenden hoe bereken je dit? x·y=(x+6)·(y-2)=(x-2)·(y+1)hoe krijg ik x en y en hoe werk je het uit? bert b Leerling mbo - woensdag 17 mei 2006 Antwoord Op Oppervlakte rechthoek blijft gelijk had ik toch bedacht dat het 2 vergelijkingen zijn met 2 onbekenden.Werk de haakjes weg bij:x·y=(x+6)(y-2)enx·y=(x-2)(y+1)Je zult zien dat de term x·y bij de vergelijkingen precies tegen elkaar wegvallen. Je krijgt dan een stelsel van twee vergelijkingen met twee onbekenden. WvR woensdag 17 mei 2006 ©2001-2024 WisFaq
\require{AMSmath}
hoe bereken je dit? x·y=(x+6)·(y-2)=(x-2)·(y+1)hoe krijg ik x en y en hoe werk je het uit? bert b Leerling mbo - woensdag 17 mei 2006
bert b Leerling mbo - woensdag 17 mei 2006
Op Oppervlakte rechthoek blijft gelijk had ik toch bedacht dat het 2 vergelijkingen zijn met 2 onbekenden.Werk de haakjes weg bij:x·y=(x+6)(y-2)enx·y=(x-2)(y+1)Je zult zien dat de term x·y bij de vergelijkingen precies tegen elkaar wegvallen. Je krijgt dan een stelsel van twee vergelijkingen met twee onbekenden. WvR woensdag 17 mei 2006
WvR woensdag 17 mei 2006
©2001-2024 WisFaq