Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 45341 

Re: Bewijs gelijkbenige driehoek

Hey,
Sorry had me even van opgave vergist.
Er moet staan: "middelpunt van de omschreven cirkel van ABC valt samen met middelpunt van de ingeschreven cirkel van ADC. Toon aan dat ABC gelijkbenig is". Excuses voor het misverstand.
Groet.

Jeroen

Jeroen
Student universiteit - zondag 14 mei 2006

Antwoord

dag Jeroen,

De raaklijnstukken vanuit C aan de ingeschreven cirkel zijn even lang. Maar de raakpunten liggen juist op de middens van de zijden AC resp. BC (middelloodlijnen). Dus AC = BC.
Dus eigenlijk speelt D helemaal geen rol!

Uit de bijzondere positie van D (snijpunt van de bissectrice uit A met BC) kun je nog veel meer constateren dan alleen de gelijkbenigheid.
Het gaat hier om een tamelijk bijzonder geval: de figuur is eenvoudig uit te breiden naar het pentagram, en dan valt alles op zijn plek. Zie de figuur.
q45361img1.gif

Anneke
woensdag 24 mei 2006

©2001-2024 WisFaq