Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Verloop funktie

Hallo Wisfaq,
Ik ondervind wat problemen en zie het niet zitten met dit probleem.
Het verloop onderzoeken van :
Een lijnstuk met lengte a wordt door een punt A verdeeld in 2 delen.Op elk van deze lijnstukken beschrijft men halve cirkels langs de andere kant van de middellijn gelegen als de gegeven halve cirkel.Onderzoek het verloop van de oppervlakte gelegen tussen de drie cirkelomtrekken.
Graag toch enkele goede tips aub?
Vriendelijke groeten,

lemmen
Ouder - woensdag 22 februari 2006

Antwoord

Ik veronderstel dat de gegeven halve cirkel het volledige lijnstuk als middellijn heeft.
Stel de lengte van de middellijn van een van de twee veranderlijke halve cirkels gelijk aan x. De andere middellijn heeft dan een lengte a-x.
De som van de oppervlakten van de drie halve cirkels is dan :
1/2.1/4.p[x2 + (a-x)2 + a2] =
p/8.(2x2 - 2ax + 2a2) =
p/4.(x2-ax+a2)

De afgeleide p/4(2x-a) = 0 voor x = a/2; hier is de som van de oppervlaktes minimaal.

LL
donderdag 23 februari 2006

 Re: Verloop funktie 

©2001-2024 WisFaq