Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Volledige inductie

Hallo,

Ik loop vast bijhet volgende bewijs.
Te bewijzen dat voor alle nÎN, n5 geldt: (n+1)22n.
Ik heb tot nu toe het volgende:
1. Voor n=6 geldt: (6+1)2= 4926 = 64. Dit klopt.
2. Inductieveronderstelling: neem nu kÎN, k5 willekeurig en neem aan dat geldt (k+1)22k2
3. Te bewijzen: (k+2)2 2k+1
4. Bewijs:(k+2)2=k2+4k+4.

Maar hoe ga ik nu verder?
Ik zit met het "" teken.
Alvast bedankt.
Marcia

Marcia
Student hbo - zondag 19 februari 2006

Antwoord

Je moet er proberen voor zorgen dat er iets van de vorm (k+1)2 komt te staan.

Splits dus (k+2)2 op in (k+1 + 1)2
=(k+1)2+2(k+1)+ 1

... misschien kan je met wat geprobeer weer verder?

km
zondag 19 februari 2006

©2001-2024 WisFaq