Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Opgave ivm asymptoten

Gegeven: f(x)=(ax2+bx+c)/(x2+(d+1)x+d)
Gevraagd: Bepaal a,b,c,d Î R zo dat
a) f de nuwaarde 1 heeft
b) de grafiek precies 1 Verticale asymptoot heeft nl. x=-2
c) de grafiek precies 1 HA heeft nl y=2

Iemand
3de graad ASO - woensdag 8 februari 2006

Antwoord

Hallo

Wij vinden het jammer dat je zelf niet eens gezocht hebt. Het is altijd interessant als de vragensteller meldt waar precies hij vastgeraakt in de oefening. Ik zal je op weg zetten.

Uit de voorwaarde in c) kan je de waarde a direct bepalen. Uit voorwaarde b) halen we dat -2 een nulpunt van de noemer is; daaruit vinden we d=2. De teller kan je schrijven als a·(x-x1)·(x-x2). Uit voorwaarde a) blijkt dat één van de nulwaarden x1 of x2 gelijk is aan 1. We schrijven de teller dus als a·(x-1)·(x-x2).

Alleen x2 is nu nog onbekend. De noemer is een kwadratische functie en heeft 2 nulpunten, waarvan één -2 is (de vertikale assymptoot). Het andere nulpunt van de noemer mag geen vertikale assymptoot veroorzaken (want er staat dat er maar 1 vertikale assymptoot is) en moet dus ook een nulpunt van de teller zijn, en dus gelijk zijn aan x2.

Door a·(x-1)·(x-x2) uit te werken kan je dan b & c ook vinden.

Probeer het eens...
Groetjes

Igor
zondag 12 februari 2006

©2001-2024 WisFaq