Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Dubbele integraal met poolcoordinaten

Ik heb het volgende probleem

$\int{}\int{}$G ex2·ey2 G = {(x,y)$\in$R2 : x$\geq$0, y $\geq$-x, en x2+y2$\leq$9}

Ik ben begonnen om hier een schets van te maken. Dit is het vlak van een cirkel met middelpunt 0,0 straal 3 op het gebied van -$\pi$/4 tot $\pi$/2
Aangezien hier een cickel in het spel is, wil ik gebruik maken van poolcoordinaten. Hier loop ik eigenlijk al vrij snel vast, ik heb een stukje onder de x as liggen, dat is dus negatief. Moet ik dat opsplitsen in een 2 aparte intergralen? Dus eerste deel - het negatieve deel. En het integreren van de hierboven gegeven functie valt niet mee mijn inziens.
Ik ben benieuwd of iemand me hiermee zou kunnen en willen helpen.

voorbaat dank

hans
Student universiteit - zaterdag 21 januari 2006

Antwoord

Een erg goed idee om over te gaan op poolcoördinaten! Niet alleen zijn de grenzen dan een stuk eenvoudiger (die heb je al gevonden) maar ook de functie die je wil integreren gaat dan een stuk vereenvoudigen. In poolcoördianten kan het met één dubbele integraal, het negatieve deel beschrijf je immers door de hoek vanaf -$\pi$/4 te laten lopen.

Gebruik de transformatieformules:
x = r.cos(t), y = r.sin(t), dxdy = rdrdt

Het is 'dankzij' die extra r die je krijgt dat de e-macht met het kwadraat in de exponent te primitiveren zal zijn, daarna valt het werk goed mee

Probeer even verder, als je vast zit hoor ik het wel!

mvg,
Tom

td
zaterdag 21 januari 2006

©2001-2024 WisFaq