Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs met volledige inductie

Hallo,

Ik moet bewijzen met behulp van volledige inductie volgende eigenschap:

13 + 33 + 53 + ... + (2n-1)3 = 2n4 - n2

Kan iemand mij helpen?

Brian
Student universiteit - donderdag 22 december 2005

Antwoord

Beste Brian,

De controle voor n = 1 zal wel gelukt zijn veronderstel ik.

We veronderstellen dan dat de gelijkheid geldt voor n = k, dit is dus de inductiehypothese. Met andere woorden: we willen nu bewijzen dat het geldt voor n = k+1, als we aannemen dat: 13 + 33 + ... + (2k-1)3 = 2k4-k2.

We willen nu bewijzen: 13 + 33 + ... + (2k-1)3 + (2k+1)3 = 2(k+1)4-(k+1)2

Een manier om dit te doen is door na te gaan of er in beide leden evenveel is bijgekomen. In het rechtlid is dit eenvoudig te zien, daar kwam (2k+1)3 bij. Het volstaat dus om aan te tonen dat dit ook precies hetgene is dat er in het linkerlid bij kwam, dat dit dus het verschil is tussen het nieuwe linkerlid en het oude linkerlid.

Probeer dus nu zelf aan te tonen dat: (2(k+1)4-(k+1)2) - (2k4-k2) gelijk is aan (2k+1)3.

mvg,
Tom

td
donderdag 22 december 2005

©2001-2024 WisFaq