Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Regel van Horner

Ik zit vast met volgende oefening:

f(x)= 9x4-24x3-59x2+46x-8

Eerst moet je hier de delers van 8 zoeken, dat weet ik, en deze in de vergelijking zetten tot je 0 als oplossing uitkomt.
Heb ik gedaan, met -2 dus is dat al (x+2)
maar de rest krijg ik niet opgelost.
Volgens mijn notities moet dit met de regel van Horner maar dat lukte niet. Hopelijk kunnen jullie me helpen?

Evy
Leerling mbo - zondag 18 augustus 2002

Antwoord

Als ik de informatie op Horner's Method goed begrijp, ga je als volgt te werk:

9x4-24x3-59x2+46x-8

Met x0=-2 krijg je:
n=4 b4a4=9
bk=ak+bk+1·x0

We krijgen:
b3=-24+9·-2=-24-18=-42
b2=-59+-42·-2=-59+84=25
b1=46+25·-2=-4
b0=-8+-4·-2=0

En zo:
P(x)=(x+2)(9x3-42x2+25x-4)
en dat is toch aardig...

Nu moeten we dit nog een keer gaan doen met:
9x3-42x2+25x-4.
We gokken op x0=4
n=3 b3=a3=9

We krijgen:
b2=-42+9·4=-6
b1=25+-6·4=1
b0-4+1·4=0

P(x)=(x-4)(9x2-6x+1)

Maar 9x2-6x+1 is een kwadraat!
9x2-6x+1=(3x-1)2

Conclusie:
9x4-24x3-59x2+46x-8=(x+2)(x-4)(3x-1)2

Nu geloof ik dat er een 'handig' algoritme bestaat voor dit 'gedoe' misschien kan je dat ons eens sturen? Maar wat was de vraag ook alweer?

Ik hoop dat het helpt, anders moet je de vraag nog maar een keer stellen....

Zie Regel van Horner

WvR
zondag 18 augustus 2002

©2001-2024 WisFaq