Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Partiele integratie

Beste Wisfaq,

Ik zit in de knoei met de volgende integraal. Op deze site heb ik wel een soortgelijk probleem gevonden, maar daarmee kwam ik toch niet verder. Ik hoop dat er iemand is die mij toch op weg kan helpen. De integraal:

̣ln(2x+1)dx

Ik heb vervolgens gebruikt dat:

̣udv = uv - ̣vdu

Ik heb genomen u = ln(2x+1), du = 2/(2x+1)dx, dv = dx en v = x. Wanneer ik dan bovenstaande regel toepas kom ik op het volgende:

x ln(2x+1) - ̣2x/(2x+1)dx

Om de tweede integraal op te lossen gebruik ik weer de formule voor partiele integratie. Wanneer ik dat doe met u = 2x en dv = 1/(2x+1) kom ik op de oorspronkelijke integraal uit. Ik vraag me af waar de fout(en) zit(ten). Bij voorbaat dank!

Mark

Mark
Student universiteit - dinsdag 26 juli 2005

Antwoord

Hallo

Je kiest voor u = ln(2x+1) en v = x, dat is ok! Nu rest alleen het oplossen van onderstaande integraal. Om deze op te lossen gebruik je GEEN partiële integratie, maar wel:

̣ (2x)/(2x+1) dx
= ̣ (2x)/(2x+1) dx
= ̣ (2x+1-1)/(2x+1) dx
= ̣ ( (2x+1)/(2x+1) + (-1)/(2x+1) ) dx
= ̣ ( 1 + (-1)/(2x+1) )dx

Kan je nu verder? Het integreren ligt nu voor de hand.

Groetjes

Igor
dinsdag 26 juli 2005

©2001-2024 WisFaq